ПРЕДПОСЫЛКИ И РАЗВИТИЕ ЛАЗЕРНОЙ ТЕРАПИИ ЗАБОЛЕВАНИЙ ОПОРНО-ДВИГАТЕЛЬНОЙ СИСТЕМЫ

Создание в 1955-1957 г.г. оптических квантовых генераторов или лазеров - принципиально новых, не имеющих аналогов в природе источников световой энергии, позволяющих получить когерентное, направленное, с высокой спектральной плотностью излучение в световом диапазоне, определило новое направление в различных областях медицины, в том числе и в травматологии и ортопедии, лазерную медицину. В 1960 году был создан первый низкоэнергетический лазер непрерывного действия на основе инертных газов - гелий-неоновый лазер, излучающий в красном диапазоне спектра с длиной волны 0.6328 мкм, и первый импульсный рубиновый лазер, работающий в том же диапазоне с длиной волны 0.6943 мкм.

Как это ни парадоксально звучит, но основы современной лазерной медицины были заложены задолго до появления теории квантовой механики и лазерной техники. В этом случае, как никогда, верна поговорка “Новое - хорошо забытое старое”.

На рубеже XIX и XX веков в медицине происходило бурное развитие нового метода лечения фототерапии (светолечения), а именно: лечение с использованием узких спектров видимой области света (фотохромотерапии). Ранее, светолечение применялось на протяжении столетий для лечения различных заболеваний. До изобретения электричества применялся солнечный свет, пропущенный через различные фильтры. Наиболее действенной считалась красная область света. При помощи красного света лечили оспенную лихорадку, рожистое воспаление, трофические нарушения еще в начале прошлого столетия (Жук В.Н.,1909). Предполагалось, что красный свет повышает устойчивость организма к инфекции. Для лечения особенно тяжелых инфекционных больных организовались специальные палаты, в которых окна драпировались плотным красным шелком и не допускались посторонние источники света.

В 1889 году датский врач-исследователь Нильс Финзен (1860-1904) изобрел аппарат, разработал принципы и методику фототерапии.

Методика Финзена с успехом прошла клинические испытания. Им же был организован институт светолечения и клиника для больных - Финзеновский медицинский Институт Света (Copenhagen).

Принципы, сформулированные Н. Финзеном, звучат чрезвычайно современно: различные спектры светового излучения оказывают различное терапевтическое действие. Наиболее эффективны области красного и синего света: “красный лечит все хроническое, синий все острое”.

Эффективность фототерапии зависит от качества фильтрации света (т.е. от спектральной плотности световой энергии). Лечение необходимо проводить в затемненном помещении при отсутствии посторонних источников света (Finsen N.,1896). Аппарат Финзена представлял собой устройство с ярким источником света - дуговой лампой, системой линз для фокусировки луча и рубиновым фильтром для фильтрации света. Таким образом, излучаемый спектр находился в пределах 0.64-0.68 нм с предполагаемой мощностью излучения около 5 -10 мВт. Финзен настаивал на применении именно рубинового фильтра, подчеркивая, что использование фильтра из крашеного стекла существенно снизит терапевтическую эффективность.

Показания к хромотерапии по Финзену были достаточно широки: от оспенной лихорадки до лечения трофических нарушений и заболеваний опорно-двигательного аппарата дистрофического и воспалительного характера. Клинический эффект лечения “чистым красным светом” объяснялся просто: повышение сопротивляемости организма. Синий свет, полученный в результате фильтрации через кобальтовое стекло применялся при травмах мягких тканей в остром периоде и способствовал уменьшению посттравматического отека и кровоизлияний.

Работы Финзена получили признание ученого мира того времени, и в 1903 году он был удостоен Нобелевской премии в области Медицины.

Метод Финзена нашел своих последователей и в России, где практически во всех крупных городах были организованы лечебные кабинеты. Судя по научным дискуссиям в медицинских журналах того времени, эффективность метода была достаточно высока. Как это нередко бывает в медицине, практический опыт и эмпирические знания намного опередили научное объяснение.

Однако метод фотохромотерапии был все-таки на время забыт. Причины этого также звучат современно: высокая стоимость и необходимость специального обслуживания аппаратуры, появление дешевых, но некачественных приборов. Негативно сказалась активная рекламная компания, появление коммерсантов от медицины, которые брались лечить все, а также общественно-политическая ситуация тех лет.

 

 

Рисунок 1. Первые медицинские установки для светолечения (фотохромотерапии). Иллюстрация из монографии N.Finsen,1896.

 

 

 

Рисунок 2. Почтовая марка с изображением первого в мире Нобелевского лауреата в области медицины Нильса Финзена.

 

В дальнейшем появление работ американских радиобиологов в области фотореактивации (А.Кельнер,1949), объясняющих эффект фототерапии, а, главное, изобретение лазеров - идеальных источников чистого света, удобных в эксплуатации, по нашему мнению, явилось предпосылкой к продолжению работ в области фототерапии в ее новом качестве - лазеротерапии.

С 1964 года впервые в Казахском университете под руководством проф. В.М. Инюшина начаты исследования биологической активности излучения низкоэнергетических лазеров в красном диапазоне. Вскоре появились первые сообщения успешного практического применения излучения гелий-неонового лазера (ИГНЛ) для лечения заболеваний слизистой рта (Корытный Д.Л.,1980), болезней позвоночника и суставов (Мазо Л.А., Броэр Б.А.,1976) и заболеваний нервной системы у детей (Шакирова Т.М, Жуковская В.В.,1969). Установлено, что наибольший биологический эффект оказывает лазерное излучение красной области видимого спектра, а наиболее подходящими источниками света для стимуляции биологических процессов являются гелий-неоновые лазеры (Инюшин В.М.,1972).

Начиная с середины 70-х годов, лазерная терапия значительно расширяет область своего применения. Монохроматический красный свет гелий-неоновых лазеров с успехом используют в лечении заболеваний опорно-двигательного аппарата воспалительного и дегенеративно-дистрофического характера, переломов костей с замедленной консолидацией (Богданович У.Я.,1980; Чаплинский В.В., Мороз А.А., Гусар П.М.,1978; Берглезов М.А., Вялько В.В., Коростылева И.С.1984; Илларионов В.Е.,1984). Издаются первые методические рекомендации по применению лазеров в травматологии и ортопедии, разработанные сотрудниками Казанского, Киевского и Центрального институтов травматологии и ортопедии, Львовского Государственного мединститута (Богданович У.Я и соавт.,1980, Берглезов М.А. и соавт,1985; Терновой К.С. и соавт.,1982). Лазерная терапия также широко используется для лечения ран и язв (Кошелев В.Н.,1980; Mester E., 1974,1980), дерматологических заболеваний (Ракчеев В.П.,1984), ишемической болезни сердца (Корочкин И.М.,1990), болезней культей конечностей (Капичникова Л.Г. и соавт,1985) и многих других патологических состояний. С целью координации фундаментальных исследований и методических разработок в Москве создан институт лазерной медицины во главе с академиком О.К. Скобелкиным. Ежегодно проводятся международные симпозиумы по лазерной медицине, основными направлениями которой являются лазерная терапия, лазерная хирургия и фотодинамическая терапия. Число ежегодных публикаций по этой проблеме превышает 1000. Аналогичные центры созданы также в США, Израиле, Германии и других странах. В 1994 году образована Международная Ассоциация по Лазерной терапии - The World Association for Laser Therapy (WALT).

На основании клинических и экспериментальных исследований известен ряд ферментов, структурных компонентов клеток и биологических жидкостей, чувствительных к определенному световому спектру (в данном случае к красному): каталаза (Скупченко В.В.,1990; Миненков А.А.,1989), комплекс цитохромов (Чудновский В.М.,1989), ДНК полимераза (Матюшев В.Б., Титов В.Б.,1986), мембранные системы клеток и клеточных органелл (Мхеян В.Б., Гаспарян Г.Г.,1980; Salet C. Et all, 1979; Древаль В.И., 1983), лимфа, внутриклеточная вода (Минц Р.И.,1983).

Облучение МКС стимулирует образование активных форм кислорода (Karu T.I.,1989). Известно, что при фагоцитозе, очищающем поврежденное место от инфекции, образуются активные формы кислорода, выполняющие бактерицидные функции (Владимиров Ю.А., Шерстнеев В.П.,1989). МКС лазера активизирует клетки, выполняющие фагоцитарную функцию: нейтрофилы и их предшественники (Young S. et all,1991), плазмоцитарную реакцию как регионарных к облучаемому участку, так и отдаленных лимфатических узлов (Каримов М.Г., Грубер Н.М., 1979). При этом реакция нормально функционирующих клеток на лазерное излучение не выражена.

У онкологических больных после курса лазеротерапии повышаются IgJ и снижаются за счет увеличения лимфоцитов IgA, что свидетельствует о хорошем иммунностимулирующем эффекте (Михайлов В.А., Скобелкин О.А., Денисов И.Н., 1992). При этом гистологические методы исследования свидетельствуют об усилении дистрофических и некротических процессов в клетках опухоли, а продолжительность жизни больных увеличивается в 3 раза. Вместе с тем, у больных ревматоидным артритом при проведении лазеротерапии отмечается иммуносупрессивный эффект (Von J.Bahn, 1983). Такое влияние МКС на иммунную систему можно определить как иммуномодулирующий эффект.

С практической и теоретической точек зрения представляет интерес взаимодействие МКС лазера и ионизирующей радиации, а именно: способность лазерного света восстанавливать поврежденные радиацией клетки (Булякова Н.В.,1989). Способность световой энергии восстанавливать разрушенный ионизирующей радиацией или коротковолновым ультрафиолетом хромосомный аппарат клеток была известна еще в те годы, когда радиационная генетика делала первые шаги. Открытие было сделано сотрудником специально созданной в США Колд Спринг Харборской национальной лаборатории (после первых испытаний атомной бомбы) А. Кельнером и названо фотореактивацией. В дальнейшем, в конце 50 годов, американский генетик Клод Руперт доказал, что процесс фотореактивации осуществляется специальным фотореактивирующим ферментом, который при возбуждении квантами световой энергии проявляет репаративную активность (за счет расщепления димеров пиримидиновых оснований, разрушающих структуру клетки, на мономеры). Красный свет оказался антагонистическим фактором по отношению к биологическому действию ионизирующей радиации. Причем коротковолновый красный свет (6300-6500А) уменьшает тяжесть лучевого повреждения хромосом в клетках, а длинноволновый утяжеляет.

При проведении лазеротерапии МКС ИГНЛ выявлено снижение АТФазной активности и увеличение концентрации АТФ в эритроцитах крови (Чаплинский В.В., Мороз А.А.,1980), снижение интенсивности перекисного окисления липидов (Зубкова С.М., Попов В.И., 1976) за счет активности ферментов антиперекисной защиты (Гармаш В.Я.,1990), что предупреждает нарушение барьерной функции мембран ишемического характера. Так у больных ишемической болезнью сердца, получающих лазеротерапию, содержание АТФ в эритроцитах увеличивается на 49%, активность каталазы на 11%, снижается спонтанная агрегация эритроцитов на 67%, происходит активизация фибринолитической активности крови (Семионкин Е.И.,1983). Это, в свою очередь существенно повышает антиоксидантные свойства крови и повышает резистентность организма.

Оптимальные дозы МКС увеличивают концентрацию общих липидов, холестерина, фосфолипидов, триглицеридов и свободных жирных кислот в мембранах эритро-, энтеро- и гепатоцитов и, одновременно, снижают концентрацию холестерина и фосфолипидов в плазме крови. При этом изменяется текучесть мембран клеток и происходит мобилизация энергоресурсов организма (Павлюст Л.П.,1988). При воздействии МКС на периферическую нервную систему, выявлена его способность повышения порог возбудимости, создавать состояние “оперативного покоя” (по А.А.Ухтомскому), которое характеризуется усилением обменных процессов (за счет активизации симпатической регуляции) и аналгетическим эффектом (Атчабаров Б.А., Бойко З..Ф.,1980). При проведении внутрисосудистого облучения крови больным с цереброваскулярными заболеваниями отмечен симпатиколитический эффект, что уменьшает риск ишемических инсультов (Зубкова С.М.,1978).

При лечении МКС ИГНЛ ортопедо-травматологических больных отмечены эффекты нормализации физиологической и репаративной регенерации, аналгезирующий эффект, противовоспалительное действие.

Многие авторы отмечают очень важную закономерность зависимости доза - эффект, который носит дискретный характер: отсутствие эффекта – максимум - отсутствие эффекта.

С момента первых публикаций по лазерной терапии возникают дискуссии о специфичности биологического влияния низкоинтенсивного излучения лазеров.

В настоящее время существуют две основные конкурирующие теории. Первая, наиболее популярная, рассматривает лазерное излучение как один из факторов активации неспецифической резистентности организма, который следует объяснять исходя из точки зрения целостности организма. Вторая теория основана на идее влияния “специфического” монохроматического света на некие особые системы фоторегуляции, существующие для опосредованного регуляторного действия солнечного света на организм животных, т.е. предполагают наличие фотоакцепторов (Панасюк Е.Н. и др., 1989). На основании этой теории параметры лазерного излучения во многом определяют ответную реакцию организма.

Теория взаимодействия энергии светового излучения с биотканью - теория биоэнергетической подкачки, предложенная В.М. Инюшиным, не получила широкого распространения, по причине неопределенности толкования биоэнерготерапии.

Специфическое действие лазерного излучения определяется воздействием на определенное звено патогенеза, после чего запускаются генетически обусловленные процессы выздоровления (саногенез). Реализация его осуществляется, прежде всего, на клеточном, тканевом, регионарном уровнях.

Лазерное излучение при определенных его параметрах может выступать и в качестве раздражителя, вызывающего неспецифическую реакцию адаптации (по Л.Х. Гаркави и соавт.,1979). В этом случае его реализация осуществляется опосредованно через центральные механизмы регуляции.

В ЦИТО биологические и медицинские аспекты применения низкоэнергетического лазерного света при лечении больных ортопедо-травматологического профиля изучались с 1978 года (лаборатория биоэнергетики – профессор И.С. Шепелева, научно-поликлиническое отделение – профессор М.А. Берглезов). Это был первый опыт лазеротерапии заболеваний опорно-двигательной системы.

В то время существовал большой разброс мнений и неясность вопросов генетической безопасности применяемых режимов лазерного излучения: плотности потока мощности (от 2 до 500 мВт/см2), экспозиции (от 30 секунд до 30 минут), числе сеансов (от 7 до 25); отсутствовали однозначные показания и противопоказания к лазеротерапии у больных пожилого и старческого возрастов, с сопутствующей патологией сердечно-сосудистой и эндокринной систем, находящихся в "группе риска" по поводу онкологических заболеваний (наиболее сложного и проблемного контингента ортопедических больных). Отсутствовали систематизированные исследования и сведения о механизме реализации терапевтического эффекта лазеротерапии больных с патологией костно-мышечной системы. Не было данных о возможности сочетания лазеротерапии с другими лечебными факторами при проведении комплексного лечения заболеваний и повреждений ОДА.

В результате проведенных за 20-ти летний период комплексных исследований время лазерная терапия широко применяется для лечения различных заболеваний опорно-двигательной системы, с применением методик, как наружного, так и инвазивного (внутривенного, внутрисуставного, внутрикостного) облучения. Разработаны оригинальные методики лечения с применением различных видов лазерного излучения и световодных инструментов. Накоплен большой опыт применения низкоинтенсивного лазерного света для лечения ортопедо-травматологических больных, на основании которого доказана высокая биологическая активность МКС лазеров. Лазеротерапия применяется во многих регионах нашей страны и за рубежом. Высокая эффективность этого метода лечения, возможность сочетания его с другими лечебными факторами, наряду с минимальным риском для здоровья пациента, не вызывают сомнения в его перспективности и необходимости более широкого применения.

В последнее время лазеротерапия постоянно пополняется новыми знаниями о механизмах взаимодействия лазерного света, новыми методиками, современной аппаратурой. Перспективность развития этого направления признана во всех областях медицины как отечественными, так и иностранными исследователями (Ohshiro T., Calderhea R.G.,1989; Germany G., Magnetti A. et al.,1986). И все же, несмотря на определенные успехи, в травматологии и ортопедии лазер делает первые шаги. Предстоят новые разработки в области применения лазерной техники, новые подходы к применению лазерного света.

К оглавлению